Бронзовка гладкая — ? Бронзовка гладкая … Википедия
МАРТИНА ГРАНИЦА — в теории потенциала идеальная граница Грина пространстваW (см. также Кольцевая граница), позволяющая построить характеристич. представление положительных гар монич. функций на W. Пусть W локально компактное, но не компактное топологич.… … Математическая энциклопедия
ВЛОЖЕНИЯ ТЕОРЕМЫ — теоремы, относящиеся к циклу вопросов, посвященных изучению неравенств между нормами одной и той же функции, принадлежащей к разным классам (нормированным пространствам). Обычно речь идет о двух классах и , где есть часть и при этом выполняется… … Математическая энциклопедия
КАРТАНА МЕТОД ВНЕШНИХ ФОРМ — дифференциально алгебраический метод исследования систем дифференциальных уравнений и многообразий с различными структурами. Алгебраич. основу метода составляет алгебра Грассмана. Пусть Vесть 2n мерное векторное пространство над произвольным… … Математическая энциклопедия
КИРХГОФА ФОРМУЛА — Кирхгофа интеграл, формула которая выражает значение и( х, t )решения неоднородного волнового уравнения в любой точке х=( х 1, х 2, x3 )ОWв момент времени tчерез запаздывающий объемный потенциал с плотностью f и через значения функции и( у, t )и… … Математическая энциклопедия
Бук европейский — Общий вид дерева в Старом ботаническом саду города Марбурга ( … Википедия
Список насекомых, занесённых в Красную книгу России — Насекомые, занесённые в Красную книгу России список видов насекомых, включённых в последнее издание Красной книги России (2001). В таблице также приведён охранный статус видов согласно Красной книге России. Содержание 1 История 2 Сп … Википедия
РОДЫ — РОДЫ. Содержание: I. Определение понятия. Изменения в организме во время Р. Причины наступления Р..................... 109 II. Клиническое течение физиологических Р. . 132 Ш. Механика Р. ................. 152 IV. Ведение Р.................. 169 V … Большая медицинская энциклопедия
МАЛОГО ПАРАМЕТРА МЕТОД — в т е о р и и дифференциальных уравнений приемы построения приближенных решений дифференциальных уравнений и систем, зависящих от параметра. 1) М. п. м. для обыкновенных дифференциальных уравнении. Обыкновенные дифференциальные уравнения, к к рым … Математическая энциклопедия
Семейство полорогие — (Bovidae)** * * Семейство полорогих, или бычьих самая обширная и разнообразная группа парнокопытных, включает 45 50 современных родов и около 130 видов. Полорогие животные составляют естественную, ясно очерченную группу. Как ни… … Жизнь животных